Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Liang Wang,* Guang-Bo Che and Chun-Bo Liu

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail:
liangwangjl@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.045$
$w R$ factor $=0.108$
Data-to-parameter ratio $=18.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[(2-phenyl-1H-1,3,7,8,-tetraaza-cyclopenta[/]phenanthrene)manganese(II)]-μ-succinato]

In the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{4}\right)\right]_{n}$ or $[\operatorname{Mn}(\operatorname{suc})(L)]_{n}$, where suc is the succinate dianion and L is 2-phenyl-1 H-1,3,7,8-tetraazacyclopenta $[l]$ phenanthrene, each $\mathrm{Mn}^{\mathrm{II}}$ atom is five-coordinated by two N atoms from one bidentate L ligand and three O atoms from three suc anions in a distorted square-based pyramidal geometry, with the N atoms in the basal plane. The $\mathrm{Mn}^{\mathrm{II}}$ atoms are bridged by the suc ligands, generating a one-dimensional chain structure. Neighboring chains interact through $\pi-\pi$ contacts, leading to a two-dimensional supramolecular structure. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds complete the structure.

Comment

Metal-organic cordination polymers utilizing simple heteroaromatic N-donor chelating ligands such as 1,10 -phenanthroline (phen) and more complex derivatives such as 2-phenyl$1 H-1,3,7,8$,-tetraazacyclopenta[$l]$ phenanthrene (L) are the subjects of increasing interest (Che, 2006; Che \& Liu, 2006). We have now combined manganese(II) cations with the succinate (suc) dianion as a linker and L as a secondary ligand, forming a new coordination polymer, $[\mathrm{Mn}(\mathrm{suc})(L)]$, (I), which is reported here.

(I)

Selected bond lengths and angles for (I) are given in Table 1. In compound (I), the $\mathrm{Mn}^{\mathrm{II}}$ atom is five-coordinated by three O atoms from three different suc ligands, and two N atoms from one L molecule in a distorted square-based pyramidal geometry, in which atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{O} 3^{\mathrm{i}}$ and $\mathrm{O} 4^{\mathrm{ii}}$ form the basal plane [symmertry codes: (i) $2-x, 1-y, 1-z$; (ii) $2-x, y$, $1-z$], and O 1 occupies the apical position (Fig. 1). Neighbouring $\mathrm{Mn}^{\mathrm{II}}$ atoms are bridged by the suc ligands, forming a chain structure (Fig. 2). The carboxylate $\mathrm{C}-\mathrm{O}$ bond distances of the suc species suggest that their bonding is more or less delocalized.

Received 23 August 2006
Accepted 28 August 2006

Figure 1
The asymmetric unit of (I), expanded to show the Mn coordination environment. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry codes: (i) $2-x$, $1-y, 1-z$; (ii) $2-x, y, 1-z$.]

Figure 2
View of the one-dimensional chain structure of (I). H atoms have been omitted for clarity.

Neighboring chains in (I) are connected through $\pi-\pi$ interactions between L ligands with a stacking distance of $3.63 \AA$, resulting in a two-dimensional supramolecular structure (Fig. 3). Finally, an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between atom N 3 of L and a symmetry-equivalent of the suc carboxylate O 2 atom (the only one not bonded to Mn) completes the structure (Table 2).

Figure 3
View of the two-dimensional supramolecular structure of (I) built up via $\pi-\pi$ interactions. H atoms have been omitted.

Experimental

The L ligand was synthesized according to a literature method (Steck \& Day, 1943). A methanol solution (10 ml) of $L(0.5 \mathrm{mmol}, 148 \mathrm{mg})$ was added slowly to an aqueous solution $(10 \mathrm{ml})$ of $\mathrm{MnCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($0.5 \mathrm{mmol}, 116 \mathrm{mg}$) and H_{2} suc ($0.5 \mathrm{mmol}, 59 \mathrm{mg}$) with stirring. The resulting solution was filtered and the filtrate was allowed to stand in air at room temperature for several days, yielding colorless crystals of (I) $(33 \%$ yield based on Mn$)$.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{4}\right)\right]$
$M_{r}=465.32$
Orthorhombic, Pcca
$a=13.920$ (3) \AA
$b=9.879$ (2) \AA
$c=28.548$ (6) \AA
$V=3925.9(14) \AA^{3}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.830, T_{\text {max }}=0.880$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.108$
$S=0.94$
4487 reflections
245 parameters

$$
Z=8
$$

$D_{x}=1.575 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.71 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.24 \times 0.21 \times 0.19 \mathrm{~mm}$

36189 measured reflections 4487 independent reflections
2470 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.103$
$\theta_{\text {max }}=27.5^{\circ}$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0524 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

metal-organic papers

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 20-\mathrm{O} 2$	$1.230(3)$	$\mathrm{Mn} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.1289(19)$
$\mathrm{C} 20-\mathrm{O} 1$	$1.259(3)$	$\mathrm{Mn} 1-\mathrm{O} 3^{\mathrm{ii}}$	$2.130(2)$
$\mathrm{C} 23-\mathrm{O} 4$	$1.242(3)$	$\mathrm{Mn} 1-\mathrm{N} 1$	$2.220(2)$
$\mathrm{C} 23-\mathrm{O} 3$	$1.271(3)$	$\mathrm{Mn} 1-\mathrm{N} 2$	$2.231(2)$
$\mathrm{Mn} 1-\mathrm{O} 1$	$2.0292(18)$		
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{i}}$	$92.83(8)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{N} 1$	$159.20(7)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{ii}}$	$99.30(8)$	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$126.02(8)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{ii}}$	$93.79(8)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 2$	$140.02(8)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$	$100.49(8)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{N} 2$	$89.20(7)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1$	$91.56(8)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$73.99(8)$

Symmetry codes: (i) $x-\frac{1}{2}, y,-z+1$; (ii) $-x+2,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O}^{2 \mathrm{iii}}$	0.86	1.92	$2.760(3)$	166

Symmetry code: (iii) $-x+2, y,-z+\frac{3}{2}$.

All H atoms were positioned geometrically ($\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

The authors thank Jilin Normal University for supporting this work.

References

Che, G.-B. (2006). Acta Cryst. E62, m1244-m1246.
Che, G.-B. \& Liu, C.-B. (2006). Acta Cryst. E62, m1453-m1455.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Steck, E. A. \& Day, A. R. (1943). J. Am. Chem. Soc. 65, 452-456.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

